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Standoff laser induced breakdown spectroscopy (LIBS) has previously been used to classify trace residues
as either hazardous (explosives, biological, etc.) or benign. Correct classification can become more diffi-
cult depending on the surface/substrate underneath the residue due to variations in the laser-material
interaction. In addition, classification can become problematic if the substrate material has a similar
elemental composition to the residue. We have evaluated coupling multivariate analysis with standoff
LIBS to determine the effectiveness of classifying thin explosive residue layers on painted surfaces. Good
classification results were obtained despite the fact that the painted surface contributes to the LIBS
emission signal. © 2012 Optical Society of America
OCIS codes: 140.3440, 300.6210, 300.6365.

1. Introduction

At the U.S. Army Research Laboratory (ARL), we
have been using laser induced breakdown spectro-
scopy (LIBS), an optical spectroscopic technique that
determines the elemental composition from the light
emission of a laser-generatedmicroplasma, to classify
trace residues at standoff distances as either hazar-
dous or nonhazardous. LIBS is an ideal technique
for standoff residue analysis since no sample prepara-
tion is required and only a small amount of material
(nanograms-picograms) is needed to generate a
usable atomic emission spectrum [1,2]. Since LIBS
is anall optical technique and the instrumentation in-
volves simple components, it can be configured for
standoff measurements [3–7]. LIBS has been pre-
viously evaluated as a technique to characterize ha-
zardous residues, including explosives [8–13]. The
coupling of LIBS withmultivariate analysis has been
used for numerous applications. In particular, par-
tial least squares discriminant analysis (PLS-DA)

coupled with LIBS spectral information is a powerful
tool for producing robust classification models
[14–18].We have obtained good results classifying ex-
plosive and non-explosive residues in the laboratory
and at standoff distances using PLS-DA [19,20]. In
the majority of these experiments, the underlying
substrate has been aluminum. In one case, we inves-
tigated a set of residue samples consisting of an explo-
sive and two background materials, dust, and oil, on
different substrates such as wood, clay tile, steel, rub-
ber, aluminum, and silicone [21]. Good classification
results were obtained for the majority of the samples;
however there were some substrates that had high
false positive rates such as the wood, travertine, and
steel. Different substrates will alter the light emis-
sion from the microplasma due to the complex non-
linear processes associated with the laser-material
interaction that initiates plasma formation. Thus, the
LIBS spectrum collected from a residue on one type of
substratemay differ significantly from theLIBS spec-
trum collected from the same residue on a different
substrate, making correct classification difficult.

Another challenge for classification is if the sub-
strate composition is similar to the composition of
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the residue, since light from the microplasma will in-
discriminately include emission from the residue and
the substrate. The design of an effective classifica-
tion model becomes difficult with an increasing di-
versity of samples and substrates. For this paper,
we used the ARL standoff LIBS system to collect
an extensive set of LIBS spectra that included multi-
ple types of explosives and background interferent
residues dispersed on painted metal surfaces of dif-
ferent colors. The composition of the painted surface
varies from paint color to paint color, but all of the
painted surfaces will have organic components. The
LIBS signal includes carbon, hydrogen, nitrogen, and
oxygen atomic emission from the organic residues as
well as from the painted substrates. Data from the
LIBS spectra were used to construct several PLS-
DAmodels with the goal to classify samples as either
an explosive or a nonexplosive irrespective of the
substrate composition.

2. Experimental

We obtained the explosive samples of cyclotrimethy-
lenetrinitramine (RDX), trinitrotoluene (TNT), and
Composition-B (36% TNT, 63% RDX, and 1% wax)
from colleagues at ARL. The car panels were ob-
tained from the following vehicles at a junkyard:
1998 black Ford pickup, 1993 white Honda Accord
EX, 1993 teal Jetta, 1991 metallic blue Toyota pick-
up, 1987 dark green Mazda pickup, 1986 silver Volvo
740 GL, and a 1985 red Toyota pickup. In addition, a
second black car panel and a light green car panel
were obtained from unknown vehicles. Circular discs
about 6–8 inches in diameter were removed from the
car panel to use as substrates to be interrogated by
the standoff LIBS system.

Explosive residue samples were prepared by ap-
plying a small amount (∼1–2 mg) onto the car panel
and then crushing the explosive and smearing it over
the entire panel. Loose explosive particles were
brushed or knocked off the car panel. Typical cover-
age is estimated to be ∼10 μg∕cm2 once the excess
explosive is removed. Non-explosive samples include
Arizona road dust, sand, diesel fuel, lubricant oil,
fingerprint oil, and blank (no residue) car panels.
Arizona road dust and sand were added in a similar
manner as the explosives, but the coverage was not
determined. Diesel fuel and lubricant oil were spread
onto the surface and then wiped down with a cloth,
leaving behind a minimal amount of coverage. No es-
timation of the coverage was determined for fuel or
oil. Fingerprint oil was applied by handling the car
panel and pressing fingertips repeatedly across the
surface of the car panel.

All of the PLS-DA analysis was performed using
the PLS_Toolbox version 5.0 (Eigenvector Technolo-
gies, Inc.) running under Matlab version 7.5 (Math-
works). Variable importance in projection (VIP)
scores were also calculated using the PLS_Toolbox.
PLS-DA is a supervised multivariate inverse least
squares discrimination method that generates pre-
dictor variables (latent variables, LV) used to classify

samples [22]. The goal of PLS-DA is to find the max-
imum separation between each class, not the overall
variance of the data set. In test sets where intraclass
variance approaches interclass variance, discrimina-
tion between groups is more difficult to achieve using
techniques that maximize overall variance.

For these experiments, we collected single-shot
LIBS spectra of residues on the various car panels.
The spectra were divided into two groups, one for
training the model and the other for validating the
model. We used either the whole broadband spec-
trum or particular atomic emission line intensities
and atomic emission line ratios of interest as input
variables. The output of the PLS-DA models returns
the probability that a sample belongs to a particular
class, in this case an explosive class or a non-
explosive class. Samples that have at least a 75%
probability of belonging to a class were considered
part of the class.

The standoff LIBS system used for these experi-
ments, shown in Fig. 1, employed a double-pulse la-
ser source (Quantel Brilliant Twins, 1064 nm, 10 Hz,
250 mJ/ pulse, 5 ns pulse width) that provided a laser
beam with a M2 < 2 at 20� meters. The area inter-
rogated by the laser is estimated to be about 5 mm2.
A 14″ telescope (Meade LX200GPS) was fitted with
UV-coated optics to provide full broadband (UV-
VIS-NIR) capability. A custom-made three-channel
gated CCD spectrometer (Ocean Optics) with adjus-
table gate width provides light throughput and
sensitivity from 190–840 nm. We used a gate width
of 800 μs in order to ensure all of the emission was
collected.

The optimum timing for collecting LIBS spectra
from the car panel surface was determined by collect-
ing multiple LIBS spectra of a silver car panel, RDX
on a silver car panel, and lubricant oil on a silver car

Fig. 1. (Color online) Standoff LIBS system.
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panel at 30 meters at various gate delay times
(500 ns, 1 μs, 2 μs) and interpulse delays (500 ns, 1
μs, 2 μs, 3 μs, 5 μs). In order to avoid damaging optical
components in the standoff system we did not inves-
tigate interpulse delays less than 500 ns. Two pa-
rameters were used to determine the optimal timing:
the signal-to-noise ratio (SNR) of the atomic emission
intensities of the RDX (carbon, hydrogen, nitrogen,
and oxygen) on the silver car panel and the root-
mean-square error of calibration (RMSEC) for the
PLS-DAmodel. The RMSEC is ameasure of howwell
a model fits the data. A lower RMSEC value indi-
cates the model fits the data better. In this case, a
PLS-DAmodel was built containing three classes: ex-
plosive residue on a car panel, a car panel blank, and
oil on a car panel. The PLS-DAmodel determines the
maximum variance between each class. The model
with the highest variance between the classes will
yield the lowest RMSEC value. In Fig. 2, two contour
plots that graph the sum total of the C, H, N, and O

atomic emission line SNR (top) and the RMSEC (bot-
tom) versus the interpulse delay and the gate delay
are shown. The optimal SNR and RMSEC values oc-
cur at an interpulse delay of 500 ns and a gate delay
of 1 μs. These values were used for collecting all of the
LIBS spectra.

3. Results

A. Classification of Painted Surfaces

For our initial standoff tests, we collected multiple
LIBS spectra of each car panel color (99 black, 100
blue, 100 green, 110 silver, 100 teal, 100 white, and
99 red) at 25and30meters. InFig. 3, theLIBS spectra
of each color car panel are displayed. Some of the car
panel spectra are easy to differentiate, such as the
white car panel, which has strong titanium emission
between 300–350 nm. Others are harder to differenti-
ate, such as the black car panel and the blue car panel.
The car panel spectra were divided into two sets, a
training set and a validation set shown in Table 1.
A PLS-DA model was constructed using the entire
LIBS spectrum as the variable input for each car
panel sample. Themodel contains seven classes; each
class corresponds to a different color. The root-mean-
square error of cross-validation (RMSECV) was
calculated for a range of latent variables in order to
determine the model’s ability to correctly classify
samples not used to train the model. The RMSECV
shows that the optimal model has 40 latent variables.
The optimalmodelwas used to classify the samples in
the validation set. For our tests, a test sample is con-
sidered classified correctly if it has 75% or greater
probability of belonging to the correct model class
and does not have a 75% or greater probability for
belonging to any of the other classes. A sample is con-
sidered misclassified if it has a 75% or greater prob-
ability of belonging to one of the six incorrect classes.
A sample is considered unclassified if it has a 75% or
greater probability of belonging to two ormore classes
(or none of the classes). As shown in Table 1, the PLS-
DA model correctly classifies the test samples at a
98% rate with no misclassified samples and a 2% un-
classified rate.

The VIP scores of each class were used to deter-
mine how much each variable in the model contrib-
uted to the classification. In Fig. 4, the VIP scores of
the white car panel class and the black car panel
class are compared. As expected the atomic emission
due to titanium from 300–350 nm is important for
the white car panel classification. Atomic emission
due to aluminum (396 nm), sodium (589 nm), and hy-
drogen (656 nm) is more important for the black car
panel classification than the white car panel. The
VIP scores indicate that the seven car panel colors
can be distinguished from each other based on their
elemental composition.

B. Classification of Residues on Car Panels

We applied the RDX, TNT, lubricant oil, dust, finger-
print oil, and sand to the car panels and collected

Fig. 2. (Color online) Timing optimization of double-pulse stand-
off LIBS system at 25–30 meters. Top: SNR of carbon, hydrogen,
nitrogen, and oxygen of RDX on silver car panel at various gate
delays and interpulse delays. Bottom: RMSEC value of a model
containing RDX on a silver car panel, oil on a silver car panel,
and a blank silver car panel. For both cases the best timing is a
1 μs gate delay and a 0.5 μs interpulse delay.
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LIBS spectra at standoff distances of 25–30 meters.
LIBS spectra of RDX, lubricant oil, and dust on a
dark green car panel and a blank dark green car pa-
nel are displayed in Fig. 5. The RDX residue and the
blank car panel share atomic emission lines due to
carbon (247 nm), hydrogen (656 nm), nitrogen
(746 nm), and oxygen (777 nm). There are noticeable
differences among the spectra due to the elemental
composition of the residues and the overall back-
ground intensity; in particular, the presence of any
residue on the car panel increases the overall spec-
tral emission since the clearcoat on the car panels re-
sults in poorer laser-material interaction. In Fig. 6,
LIBS spectra of RDX residue on a black, red, teal,
and white car panel and the blank of each color are
displayed. The background emission in the RDX re-
sidue spectra is stronger than the blank for each car

panel. The relative nitrogen and oxygen atomic emis-
sion intensity at 746 and 777 nm is also stronger in
the RDX residue spectra.

A PLS-DA model was built that included LIBS
spectra of each residue on each car panel color in or-
der to classify unknown residues as an explosive or
non-explosive. In Table 2, the 414 LIBS spectra col-
lected for the model from residues on black, blue,
dark green, silver, teal, red, and white car panels are
listed. The broadband spectra of each sample were
used as the variable inputs for the model. The spec-
tra were grouped as a class based on the residue type
on the car panel rather than the color of the car pa-
nel. For example, the lubricant oil class in the model
contained 10 samples from each of the seven car pa-
nel colors for a total of 70 samples. The model con-
tained six classes of residues on car panels:

Fig. 3. (Color online) LIBS spectra of car panels. From top: black, blue, dark green, silver, teal, white, and red.

Table 1. Number of Spectra in Training and Validation Sets for Classifying Car Panels Based on Car Color and the Classification Results

Car Panel
# in

Training Set
# in

Validation Set
Test Samples

Classified Correctly
Test Samples
Misclassified

Test Samples
Unclassified

Black 69 30 97% 0% 3%
Blue 70 30 93% 0% 7%
Dark Green 70 30 97% 0% 3%
Silver 77 33 100% 0% 0%
Teal 70 30 100% 0% 0%
Red 69 30 100% 0% 0%
White 70 30 100% 0% 0%
All 495 213 98% 0% 2%
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explosive (TNT and RDX), blank car panel, lubricant
oil, dust, fingerprint oil, and sand. By defining the
classes of the model by residue and not by color of
the car panel, the PLS-DA model maximized the var-
iances between the residues instead of the sub-
strates. The optimal number of latent variables for
the whole spectra PLS-DA model was determined
to be 70 based on the cross-validation (CV) classifica-
tion error, RMSECV, and RMSEC.

We collected another 850 LIBS spectra of residues
on black, blue, dark green, silver, teal, red, and white
car panels to test against the whole spectra model,
and they are listed in Table 2. For each test sample,
the probability that the sample belongs to the explo-
sive class was calculated from the PLS-DAmodel and
classification was determined using the same criteria
outlined above. A true positive rate (TPR) of 99.5%
for 210 explosive test samples and a false positive

Fig. 4. (Color online) VIP scores of white car panel class (top) compared to the black car panel class (bottom) from the PLS-DA car panel
model.

Fig. 5. (Color online) LIBS spectra of (a) RDX on dark green car panel, (b) lubricant oil on dark green car panel, (c) dust on dark green car
panel, and a (d) blank dark green car panel. Note the different y axis scale for each spectrum.
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rate (FPR) of 1.9% for 640 non-explosive test samples
were calculated using the whole spectra PLS-DA
model. We used the VIP scores to determine the vari-
ables that contributed to the explosive classification.
In Fig. 7, the VIP scores of the explosive class are
compared to the LIBS spectra of RDX on a car panel
and a blank panel. All four constituent elements of
RDX (C, H, N, and O) contribute to the explosive clas-
sification. However, there are other variables that
contribute to the separation of the explosive class
from the non-explosive classes; these include but are
not limited to silicon (251 and 288 nm), magnesium
(279 nm), aluminum (309 and 394 nm), titanium
(320–340 nm), and potassium (766 and 769 nm). This
indicates that classification is partly based on the
background substrate composition and not just the
residue composition.

Since the goal is to separate explosives from non-
explosives, the data set can be down-selected a priori,
in this case from the broadband spectrum to the
atomic emission intensities of interest. We selected
emission intensities associated with the constituent

elements of the explosive samples, i.e., C, H, N, and O
and the molecular emissions due to C2 (516 nm), and
CN (388 nm). Previously, we had used nonlinear com-
binations of the normalized emission intensities of
the constituent elements and molecular species to
describe the plasma chemistry of the sample as vari-
able inputs for a PLS-DA model [23]. The variable
inputs, which include summed intensities of multiple
emission lines from the same species (“sum”) and in-
tensities normalized to the total emission intensity
(“norm”), are listed in Table 3.

Using the 132 down-selected variable inputs, a
PLS-DA model similar to the whole spectra model
was constructed. It contained six classes based on re-
sidue type: explosive, blank, lubricant oil, dust, fin-
gerprint oil, and sand. The same 414 LIBS spectra
used in the whole spectra model were used for the
new model. According to the RMSECV for the explo-
sives class, the optimal number of latent variables is
30 latent variables. We collected ∼3800 LIBS spectra
of residues on car panels to test against the model,
listed in Table 2. The TPR was 98% for 908 explosive

Fig. 6. (Color online) LIBS spectra of RDX residue on car panel (solid) and blank car panel (dashed) for (a) black, (b) white, (c) red, and
(d) teal car panels.

Table 2. Number of Samples in Training and Validation Sets Used for Classifying Residues on Car Panels

# in Whole
Spectra Model

# in Whole
Spectra Test Set

# in Ratios and
Intensities Model

# Ratios and
Intensities Test Set #1

# in Ratios and Intensities
Test Set #2

RDX 69 140 69 603 186a

TNT 25 70 25 305 -
Blank 70 140 70 638 200a

Lubricant oil 70 140 70 639 200a

Dust 60 120 60 538 -
Fingerprint oil 60 120 60 540 -

Sand 60 120 60 521 -
Comp-B - - - - 331

Diesel fuel - - - - 593
aOn second black car panel and light green car panel.
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Fig. 7. (Color online) LIBS spectra of RDX on black car panel (bottom) and black car panel (middle) compared to the VIP scores of the
explosive class (top) from the whole spectra PLS-DA model.

Table 3. List of Atomic Emission Intensities and Ratios Used as Variable Inputs for PLS-DA Model

C 247 C2∕CN N∕�C� C2 � CN�H� CN∕N sum
C 833 C2∕H N∕�C� CN�H� CN∕O sum
C2 516 C2∕N N∕�C� C2 �H� H∕N sum
CN 384 C2∕O �O�N�∕�C� CN�H� H∕O sum
CN 385.2 CN∕H �O�N�∕�C� C2 �H� N∕O sum
CN 385.8 CN∕N C sum �O�N�∕�H� C� sum
CN 386 CN∕O C2 sum �O�N�∕�C� C2 � CN�H� sum
CN 388 H∕N CN sum �C2 �N�∕�CN� C� sum
H 656 H∕O H sum C∕�C2 �O� sum
N 742 N∕O N sum �O� CN�∕C sum
N 744 �O�N�∕�H� C� O sum �N� CN�∕C sum
N 747 �O�N�∕�C� C2 � CN�H� C sum norm �N� C�∕CN sum
O 777 (�C2 �N�∕�CN� C� C2 sum norm N∕�CN�O� sum
N 818 C∕�C2 �O� CN sum norm �O∕N�∕�H∕C� sum
O�N 822 �O� CN�∕C H sum norm CN∕�N∕C� sum
O�N 824 �N� CN�∕C N sum norm O∕�C� C2� sum
C 247 norm �N� C�∕CN O sum norm O∕�C� CN� sum
C2 516 norm N∕�CN�O� 1∕C sum O∕�C� CN� C2� sum
CN 388 norm �O∕N�∕�H∕C� 1∕C2 sum O∕�N� CN� sum
H 656 norm CN∕�N∕C� 1∕CN sum N∕�C� C2� sum
N 747 norm C2∕�O∕C� 1∕H sum N∕�C� CN� sum
O 777 norm O∕�C� C2� 1∕N sum N∕�C� CN� C2� sum
1∕C 247 O∕�C� CN� 1∕O sum O∕�C�H� sum
1∕C2 516 O∕�C� CN� C2� C∕C2 sum O∕�C� CN�H� sum
1∕CN 388 O∕�N� CN� C∕CN sum O∕�C� CN� C2 �H� sum
1∕H 656 N∕�C� C2� C∕H sum O∕�C� C2 �H� sum
1∕N 747 N∕�C� CN� C∕N sum N∕�C�H� sum
1∕O 777 N∕�C� CN� C2� C∕O sum N∕�C�C2 � CN�H� sum
C∕C2 O∕�C�H� C2∕CN sum N∕�C� CN�H� sum
C∕CN O∕�C� CN�H� C2∕H sum N∕�C� C2 �H� sum
C∕H O∕�C� CN� C2 �H� C2∕N sum �O�N�∕�C� CN�H� sum
C∕N O∕�C� C2 �H� C2∕O sum �O�N�∕�C� C2 �H� sum
C∕O N∕�C�H� CN∕H sum C2∕�O∕C� sum
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samples and the FPR was 2.7% for 2876 non-
explosive samples. These are similar to the results
obtained from the whole spectra model, except that
we know the variables that are contributing to the
classification are due to the emission intensities
and ratios of the constituent elements of the explo-
sive. We further tested this model by collecting LIBS
spectra from sample types not used to construct the
model. We applied the explosive composition-B and
diesel fuel to the seven car panels. In addition, we
added RDX and lubricant oil to two different car pa-
nels, a second type of a black car panel and a light
green car panel. The second test set was tested
against the ratios and intensities model using 40
latent variables. The FPR for the second test set con-
sisting of substrates not included in the model was
similar to the first test set; however the TPR was
slightly lower. All of the TPR and FPR for the test
sets described in this section are displayed in Table 4.

C. Fusion of Classification Probabilities

We have previously explored the idea of fusing the
probability data generated from one model with
probability data generated from a different model
[21,24]. In this case, we generated two sets of prob-
abilities from an identical validation sample set by

testing against the whole spectra model and the
ratios and intensities model. Then, we multiplied
the probabilities from each model for a particular
sample together. The new “fused” probability was
then used to determine if the sample belongs to the
explosive class. The “fused” probability threshold for
being classified as an explosive is 0.56 (0.75*0.75).
The sample set includes representatives of each
of the residue and car panel combinations. There
are a total of 156 explosive samples and 631 non-
explosive samples. In Figs. 8(a) and 8(b), the prob-
ability that a sample belongs to the explosive class
is displayed for the whole spectra model and the ra-
tios and intensities model, respectively. In Fig. 8(c),
the fused probability for each sample belonging to
the explosive class is displayed. It is readily apparent
that the number of false positives is greatly reduced.
This is a result we have observed in other studies of
fusing probabilities from different models. The re-
sults are displayed in Table 4. The FPR improves
by an order of magnitude from 1.9% to 0.16%.

4. Discussions and Conclusions

The seven car panels were successfully classified
based on color, 209 out of 213 test samples, using
LIBS spectral data as variable inputs for a PLS-
DA model. Using VIP scores, we showed that the
classification result was based on the elemental com-
position of the car panels. More importantly, we have
demonstrated that LIBS and multivariate analysis
can be used to classify residues as explosive or
non-explosive on the painted car surfaces despite
the potential interference from constituent elements
present in the paint. Two PLS-DA models were con-
structed: one used the whole spectra and the other

Table 4. Classification Results of Residues on Car Panels Using
Various Validation Sets

TPR FPR

Whole spectra test set 99.5% 1.9%
Ratios and intensities test set #1 98% 2.7%
Ratios and intensities test set #2 84% 2.5%
Fused probability results 97% 0.16%

Fig. 8. (Color online) The probability that a test sample belongs to the explosive class determined from the PLS-DA (a) whole spectra
model, (b) ratios and intensities model, and the (c) fused probabilities from the whole spectra model and ratios and intensities model.
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used atomic intensities and ratios of the constituent
elements, i.e., carbon, hydrogen, nitrogen, and oxy-
gen as the variable inputs. For both of these models,
the model classes were based on the residue type, not
the car panel color. In Fig. 9, VIP scores from the
model based on car panel color and the VIP scores
from the whole spectra model based on residue type
are compared. The VIP scores of the carbon (248 nm),
hydrogen (656 nm), oxygen (777 nm), and nitrogen
(746 nm) atomic emissions contribute more to classi-
fication in the explosive class than in the car panel
class.

Using the preselected atomic emission intensities
and ratios as variable inputs has two major advan-
tages: (i) the variables responsible for classification
as an explosive are all due to the constituent ele-
ments (C, H, N, and O) instead of elements due solely
to the car panel substrate, and (ii) significantly less
computer processing is needed to create PLS-DA
models and test them using 132 variables compared
to the 8000� variables used in the whole spectra
model. An additional test set that included samples
not used to construct the model was tested against
the ratio and intensities PLS-DA model. The TPR
was lower, especially for the RDX on the light green
panel, but the FPR was about the same. Since the
RDX on the light green car panel had the lowest
TPR of 78%, a future model might incorporate sam-
ples containing residues with light green car panels.
A new independent test set of LIBS spectra would be
collected to validate the new model.

Previous fusion techniques have focused on using
spectral information from two orthogonal tech-
niques such as LIBS and Raman, but this approach
can lead to complicated experimental configurations

[7,25,26]. In this work, we demonstrated that build-
ing two different PLS-DA models based on the same
set of LIBS spectra and subsequently fusing the re-
sults from the test data set decreases the FPR for ex-
plosive residues on painted surfaces. Decreasing the
FPR is essential for applying detection techniques to
rarely occurring events. The range and scope of the
application, the types of samples being analyzed, the
limits and boundaries of the model, and the method
of data collection must all be clearly defined in order
to fully realize a predictive classification model for
successful standoff LIBS residue classification.

The authors would like to thank Dr. Andrzej
Miziolek for originating the standoff LIBS system
development at ARL.
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